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The critical value of a longitudinal compressive force is calculated for a long- 
itudinally compressed viscoelastic rod subjected to a slowly varying transverse 
load. A foundation of the computation method by creep according to a long- 
time modulus is given for the subcritical values of this force. 

The method of investigation is based on some Tauberian theorems of Paley- 
Wiener-Gelfand type [ 1 - 41. 

1, Let a thin viscoelastic rod of variable section of finite length I , subjected to a 
longitudinal compressive force 1’ and influenced by a slowly varying external transverse load 

P (5, 1) , be liable to weak bending f53. Let us select the origin at one of the rod ends 
and let us assume that the rod axis is located along the r: -axis at time t = 0 . Then the 
deflection 11 (J. f) of the rod axis is described by the following boundary value problem 

C5, 61: 

i = 1,2,3,4 (1.2) 

Here (1.2) are the self-adjoint boundary conditions describing the nature of the rod fast- 

ening at the ends x = o and z -= E, K (t, z) is the creep kernel of the rod material, 

I (x) is the moment of inertia of a rod section with abscissa x relative to the section 

axis, and I:’ is the instantaneous elastic modulus. 
Let us assume that K (t, Z) is weakly singular at 0 < z < t < 00, E = con%, I (,r) 

is finite and separated from zero in [O, EJ and two of the four boundary conditions (1.2) 

As is known [5], conditions (1.3) are satisfied for clamped, hinged, and a simply supported 
end, 

Let us say that the vector function f (t), 0 < t < 00 belongs to the class il. if it takes 
values from the Banach space C f0, Ef and is measurable and bounded almost every- 
where in each finite interval of the half-axis [O, co) [‘I]. 

We shall henceforth assume throughout that P (x, 1) belongs to .-! as a function of t 
Then !/ (J, t) will also belong to -4. 

Let a (I) be some continuous function positive in 10, m) . 

We say that for a given Y the boundary value problem (1, l), (1.2) is Euler stable 
with weight ct (ti if the existence of a finite limit uniform in z E lOI I] 

L,p Iin p (2, t) a (l) 
I-+32 0.4) 
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implies the existence of a finite limit uniform in z E [O, I] 

L a?/ = lim ~1 (z, t) CL (t) 
i4z.z 

(1.5) 

We ca11 P<,(f)) the critical value of the force P corresponding to the weight CL (t) 

if for all P < P<,(,,) Euler stability with weight (r (t, holds and for P = PC,(,)> it no 
longer takes place. 

As is known [8], the investigation of the Euler stability of an elastic rod reduces to the 

spectral analysis of a fourth order differential operator. Investigation of the Euler stabi- 

lity of a viscoelastic rod would moreover require the application of some Tauberian 
theorems of Paley-Wiener-Gelfand type based on a study of the spectrum of Volterra 

operator on a half-axis [ 1 - 41, 
This approach permitted the following results to be obtained. 
Theorem 1. Let 

for any measurable bounded set b C ](J, w) 
t 

Then the following estimate holds for the critical value of the force PC,(,)) 
, 

where pL is the critical Euler force for the elastic problem corresponding to the problem 

(1. l), (I. 2). 

For P < PC,(,) , the solution of the boundary value problem obtained from (1. l), (1.2) 

by replacing y by Lay , p by Lap and the Volterra operator 1’ with kernel A’ (t, T) by 

the operator of multiplication by the constant T, , is I,,!/ . A more exact result (see [9]) 
is successfully obtained for 

a (t) = ,-et, ImB = 0 (1.6) 

Theorem 2. Let 

R (t, T) = A, (t - T) + ii, (t, r) (1.7) 
where 00 

i) A, (t) > 0, t > 0, 2) /Q(0)= Ko(t)F”“ft< 70, 
s 

ImO=O 

0 

3) k, (ID) takes on real values only on the real axis ; 
4) K, (t, T) satisfies conditions (l),(2) of Theorem 1 for CL (t) = F”; 

1 

Then the critical force Pc,-ot) is determined by the expression 

P~e-~~) == P, [I -t k, (0)1-l (1.8) 

where P, is the critical Euler force for the elastic problem corresponding to the problem 

(1.1). (1.2). 
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For p < p -II/> the limit deflection (L ?J) (z) is the solution of the boundary value 
problem obtaiied from (1.1). (1.2) by replicing !/ by L,?J, p by f,,p and the operator 
\’ by the operator of multiplication by k, (0). 

2. The set Pi. i =- 1, 2, . . . of those I’ for which the homogeneous elastic bound- 
ary value problem corresponding to (1.1). (1.2) has a nontrivial solution will be called 
the Euler spectrum of the elastic problem corresponding to (1. l), (1.2). (As is known, 
all Pi > 0, and the Euler critical force P, coincides with PI.) 

Let M (P) denote the differential operator generated by the differential expression 

and the boundary conditions (1.2) u (M (I’)) its domain of definition in the space 

C ](J, I\ and Q,, (.(.. 4, I’) its Green’s function. 
Let 1: be the operator generated by the double differentiation operation and the 

boundary conditions (1.3). Its domain of definition in (’ [I!, I] will be denoted by 1) (I{). 
It is clear that /J (I:) y /J (M (I’)). 

Let us assume V (I’) 3r-l ((‘1 Il. For fixed .r‘ and P , Q. (x, F, I’) E 1) (/3), and 
the operator 1,’ is self-adjoint in I,, ((J, I), hence for any 6 E D (B) 

(2.1) 

Henceforth Q (P) will everywhere be understood to be the Fredholm operator (2.1) 
acting in C [O, 11. 

Let (yi (i’),-‘, i 1, 2, . denote the eigenvalues of the operator Q (I’) . We note 
that c/i (0) agree with theEuler spectrum l’i (i - 1. 2, . . .) of the elastic problem 

corresponding to (1.1). (1.2) and 

!,-’ (P, ;= 11-.‘M (PJ B-1 (M (0) -- I’H) = K’dl (0) - I’Z v-1 (0) - PI 

on D (M (I’)) . Hence 
C/i (P) z Pi ~~ I’, i= 1, 2,. . . (2.2) 

Let *,, (,)) (0, co) denote the Banach space of the functions f (t) which are measur- 

able and bounded almost everywhere in each finite interval of the half-axis [O, m) 

for which the finite limit 
L,f = IinJ j (t) CL (t) (2.3) 

with the norm 
I---X 

llfll,, (I)) z yslup 1 f (t) 1 a (t) (2.4) , cc 

exists, and let ZcI (,J) (0, 00) be its subspace consisting of those f for whfch I,,/ (1. 
Analogously [ 3, 41, the following assertion holds. 
In order that for each f (t), which is measurable and bounded almost everywhere in 

each finite interval of the half-axis [O, X), the existence of I,,] should imply the ex- 

istence of Lo, where (1 (t) is the solution of the integral equation 

. 

it is necessary and sufficient that h be a regular point in the space A<, (,)) (0, 00) of 
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the operator v 

We shall henceforth assume everywhere that the kernel of the Volterra operator I’ (2.6) 

satisfies the conditions (1) - (3) of Theorem 1. These conditions assure boundedness of 

6’ in both A(, (,)) (0, CO) [7] and in Z<, (tj) (6, 00) C3]. 

3. We introduce the Banach space CA,, (,,) of the vector functions f (t) E A for 

which the limit (2.3) exists, with the norm (2.4), where 1 f (to) 1 now denotes the norm 

of the element f (1,) in C lo, 11. 

Let p (r, t) belong to CA<, ,([)). The boundary value problem (1. l), (1.2) is equiva- 

lent to the following integral equation of Volterra type : 

(PVQ (P) - I) y = M-1 (P) (I + V) p (3.1) 

where V is the Volterra operator (2.6) acting in A,, (,)) (0, CO) . 

The investigation of the Euler stability of the viscoelastic problem (1.1). (1.2) reduces 
to the following problem. 

Find the conditions under which the solution of (3.1) also belongs to this space for 
JJ E CA<, (n) and find the expression for ~5,): in terms of L,p. It is clear that if l/P 

is a regular point of the operator Q (P) 1/ in the space CA<, (,I), then the boundary 
value problem (1. l), (1.2) is Euler stable with weight a (t). Hence, investigation of the 
Euler stability of the boundary value problem (1. l), (1.2) is closely related to the study 
of the spectrum of the operator Q (P) V in the space CA,, (fJ). 

The theorem of multiplying spectra (see Theorem 3 in [4]) according to which (taking 
account of (2.2)) 1 

(3.2) 

is carried over to the operator Q (P) 1’ acting in the space CA<, (,)) Here n (1 (,,) (17 
is the spectrum of the operator F (2.6) in Aca (!,) (0, CU) and cicl (i,, (0 (I’) V) is the 
spectrum of the operator Q (P) V in CA<, (ljj, 

Lemma 1. If f/p is a regular point of the operator Q (P) ie in CA<, (Ijj, then 

L,y is the solution of the following boundary value problem: 

d’L,y 
-P(l-kTi;)dz” = - (l-1- irk) faap 

G’, [IQ] = 0 ( 

i = 1,2, 3,4 

i.e. the problem obtained from (1.1). (1.2) by replacing y by L,y, p by L,J~ and the 
Volterra operator V (2.6) by the operator of multiplying by the constant Tk (see con- 
dition (3) of Theorem 1). 

Proof. Let us rewrite (3.1) as follows : 
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and let us pass to the limit for t -+ 00. We obtain 

i,.kQ (1’) - + / l,,y = -+- (1 $ 7’k) 31-1 (I’) IQ 
\ I 

We show that Tk~ Q ca (,)) (V). If this is not so, then (2.5) will have the solution 

Cp E *<, (t)) (0, 03) for any f E Aca (,)) (‘A~). Let us choose f so that L,f # il. But 

if we pass to the limit as i --f 00 in (2.5) which can be rewritten as follows: 

then we obtain 0 = &f. 
In conformity with (3.2), l/P 7’k is a regular point of the operator Q (P) in C lU, II 

and therefore (T& (P) - (l/f’) I)-’ exists. Then 

I’?‘,; 
Z,J ~~ i’ “,,Q (Z’) - -+j- Z .\I_’ (I’) r,&*/l (3.4) 

which can be rewritten as 

Lay = - (1 + Tk) (Q-i (P) - T/,PZ)_’ M-1 (P) L,p 

It hence follows that Luy is the solution of the boundary value problem (3.3). 

It follows’from (3.2) that the spectral radius of the operator Q (I’) 1’ in the space 
CAIC,C,il equals the product of the spectral radius rCaCljj (V; of the operator I‘ (2.6) 

in A,,,,,, (0, 00) by the spectral radius of the operator V (P) (2.1). The estimate found 
for the space Z<,(,)) (0, M) in D] is retained for rCaCtj) (V) in A,,,,,, (0, CO) , Hence, 

Theorem 1 follows from Lemma 1. 

4. Let us turn to the proof of Theorem 2. To do this we need the following 
Lemma 2. Let K (1, T) be representable in the form (1.7), where Kn (t) satisfies 

condition (2) of Theorem 2, K, (t, it) satisfies conditions (4) and (5) of the same theo- 

rem. 
Then in order that the viscoelastic problem (1. l), (1.2) be Euler stable with weight 

e -“tl it is necessary and sufficient that 

Pi # p (kg (10) -t I), Hew>0 (4. I) 

where Pi is the Euler spectrum of the elastic problem corresponding to (1. l), (1.2) and 
k, (K) is the Laplace transform of the function Zi, (t). 

Proof. The sufficiency of condition (4.1) follows from (3.2) and from a general- 

ized Paley-Wiener-Tauberian theorem [1] (see [3]) proved analogously [4] (see Theorem 

2). 
We prove its necessity. For some G with He w > 6 and some Pi let the equality 
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(P~-P)jf’=ko(w) (4.2) 

hold, This equality means that (Pi - P)iP belongs to the spectrum of I’ in RC,_srj (0, 

-,I. Hence (anaIogo~ly to 14)). there exists a function 18 (t) & A~e_,tj (0, a’] such 
that 

(i 
V V) z+,_st> (6, 00) (4.3) 

Let us represent (3.1) as follows : 

By gi (s) we denote the eigenfunction of the operator (j (P) (2.1) corresponding to the 

eigenvalue li(Pi - P) and we assume 

Then 

Analogously to [4”j we have 

Q (P) I’ - 

It hence follows that taking account of (4.3) and (4.5) the deflection y (x, t) does not 

satistjr condition (1.5) for a load of the form (4.4) (which satisfies the condition (1.4) 

for 01 (t) = ,-a*) l 
Proof of Theorem 2. It easily follows from Lemma 2 that Euler stability with 

weight e -Of holds for i/P>ko(%)/(P, -P) , and for i/P40 (O)/ (P, - P) it no longer 

takes place. Hence, (1.8) is obtained for P,,,-at) . The second assertion will follow 
from lemma 1 and from (3.2) if it can be proved that Tk=k, (0). 

In conformity with (1. ‘7) 1 ‘L 

(4.6) 

and it follows from condition (5) of Theorem 2 and condition (2) of Theorem 1 that the 
limit on the right in (4.6) equals zero. 

Note 1. The kernel of N. Kh, Arutiunian 1101 

satisfies the conditions of Theorem 2 for 0 = 0, since 

The expression (1.8) for the critical force P(c 
kernel at 8 = 0 in [ll]. 

01) has been obtained for the Arutiunian 

Note 2. The method of calculation L,?, for CL (t) s 1 by using the boundary value 
problem (3.3) is used in engineering computations. This is the so-called method of ana- 
lyzing the creep by means of the long-time modulus [6, 111. Theorems 1 and 2 afford 
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a foundation for this method. 
The author is grateful to Iu. N. Rabotnov, S, G, Mikhlin, G. I. Barenblatt, V. B. Lidskii 

and V. S, Ekel’chik for useful discussions. 
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